If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x-251=0
a = 3; b = 6; c = -251;
Δ = b2-4ac
Δ = 62-4·3·(-251)
Δ = 3048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3048}=\sqrt{4*762}=\sqrt{4}*\sqrt{762}=2\sqrt{762}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{762}}{2*3}=\frac{-6-2\sqrt{762}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{762}}{2*3}=\frac{-6+2\sqrt{762}}{6} $
| 7x-10+x-2=6x-3+4x-5+x | | 5x+5=3x+4= | | 8(4x+3)+2(x²+9)/2=3x(x+2) | | 2x-5+10x=10x-3x+4 | | 3g+5=102 | | 5+2(x-1)-3(3+2x)=-3(x+2) | | x−27=3(x−2) | | 480/1+100/120=x | | 3x-2=4x+5= | | 4x2−23x=0 | | 6x-9=2x+7= | | 3x+3=3x-1 | | 2x+5x=63ç | | 4(x–2)=2(x+2) | | 2(x-4)-2(3-x)=x-7-x)-x+7-x) | | 29+9x=173 | | 4(x+1)=−9 | | x+6=28+3x | | 68+9x=194 | | 45=10x+(-4) | | 2(x-4)-2(3-x)=x+7-x)-x)-x) | | 5x+-5=35 | | x°12=360 | | 19x-22=18x+21 | | 29+6x=131 | | 2)7n+5=5n+25 | | 9+9x=117 | | 3x+25=34-2x | | 9y+43=79 | | 6x+10-x=-15 | | 9+5x-x=1 | | -4x-9=x+51 |